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INTRODUCCION:

La prediccion de mortalidad en UCI es clave para la toma de decisiones clinicas y la asignacion eficiente de recursos. Las escalas tradicionales,
como SOFA y APACHE I, tienen limitaciones en precision individual y aplicabilidad a contextos especificos. Este estudio propone modelos de
aprendizaje automatico explicables para anticipar mortalidad hospitalaria en pacientes criticos, integrando rendimiento predictivo, interpretabilidad
clinica y comparacion con scores clasicos.

METODOS:

Estudio retrospectivo en una cohorte de 1.200 pacientes adultos ingresados a la UCI del Hospital Clinico de la Red de Salud UC-CHRISTUS,
entre el 1 de agosto de 2023 y el 31 de diciembre de 2024. Se utilizaron variables clinicas, de laboratorio y demogréficas recolectadas durante las
primeras 24 horas. Se entrenaron cinco algoritmos de clasificacion (KNN, Naive Bayes, Regresion Logistica, Random Forest, XGBoost y
LightGBM), comparando tres configuraciones: (1) variables seleccionadas mediante SHAP, (2) solo puntaje SOFA y (3) solo puntaje APACHE II.
El conjunto de datos se dividié en 80% entrenamiento y 20% prueba. Se evalué desempefio mediante AUC, F1-score, sensibilidad, especificidad,
VPP y VPN. Se utiliz6 SHAP (SHapley Additive exPlanations) para interpretacién global e individual de los modelos. Estudio aprobado por comité
de ética institucional (ID 220907003).

RESULTADOS:

La cohorte fue equilibrada por sexo (50.1% mujeres), con predominio de pacientes entre 60—80 afios (42.2%). La mortalidad hospitalaria fue
15.0%. El modelo LightGBM con variables SHAP obtuvo el mejor desempefio global (AUC: 0.934; sensibilidad: 94.6%; VPN: 0.99), seguido de
Random Forest con SHAP (AUC: 0.901; F1-score: 0.63). En todos los algoritmos, las versiones basadas en SHAP superaron a las que usaron
solo SOFA (AUC promedio 0.81) o APACHE II (AUC promedio 0.84). En términos clinicos, las variables mas influyentes fueron ventilacién
mecanica, tipo de diagndstico (quirdrgico o infeccioso), creatinina, indice de comorbilidad de Charlson, BUN, lactato, edad y presion arterial media.
Los modelos con solo scores tradicionales, si bien alcanzaron buena sensibilidad (hasta 100% en APACHE-LightGBM), mostraron menor
precision global (accuracy 62-76%) y F1-scores mas bajos (<0.48). La visualizacion SHAP permitié validar la coherencia clinica del modelo y
facilito la interpretacion para el equipo asistencial.

CONCLUSION:

Los modelos de machine learning predicen mortalidad hospitalaria con alta precision, superando de forma consistente a los scores tradicionales.
La combinacion de rendimiento técnico y transparencia explicativa convierte a SHAP en una herramienta potente para fortalecer la confianza
clinica en modelos predictivos. Este enfoque promueve una medicina intensiva mas proactiva, personalizada y basada en datos. Futuras etapas
incluiran la ampliacién progresiva de la cohorte para robustecer el modelo y explorar su generalizacion a distintos subgrupos clinicos dentro de la
ucCl.



